Diagnostics for Confounding in a PK/PD Model

Jerry Nedelman, Don Rubin, Lewis Sheiner

ECPAG,

April 27, 2004

Outline

- PK/PD and confounding
- A heuristic example
- A (nearly) real example
- A model
- Model-implied diagnostics
- Conclusions

PK/PD and confounding

- PK/PD Relationship:
 - Plasma drug concentration
 - versus expected clinical response
 - when patients are randomly assigned to concentrations.
- In parallel-group, dose-controlled trials, concentration is an outcome.
 - Observed concentration versus mean response may be different.
 - Call such a difference confounding.

A heuristic example: setup

•Note correspondence of concentrations in the two plots.

trial

Dose/concentration relationship, fixed-dose

PK/PD relationship, concentration controlled

trial

A heuristic example: confounding

- Suppose that in the fixed-dose trial, patients who have higher concentrations at a given dose also have higher efficacy at a given concentration
- •The solid line is the least-squares fit to the resulting data
- It is a **biased** estimate of the true PK/PD relationship, the dotted line

A heuristic example: no confounding

- Suppose that patients who have higher concentrations at a given dose are equally likely to have high or low efficacy at a given concentration, and the same for lower concentrations.
- •The solid line is an **unbiased estimate** of the true PK/PD relationship

A heuristic example: residuals under confounding

A heuristic example: Residuals, no confounding

Residuals do not exhibit correlation.

PK/PD and confounding, reprise

- A cause: patients differ with respect to confounders, covariates that affect both PK and PD.
- Confounders may not be observed.
- We'll assume such a cause.

A (nearly) real example

Real drug, some details changed

PD = quantitative clinical outcome

Trough concentrations observed in parallel-group, dose-controlled

study

A model to examine possible confounding

 D_i = randomized maintenance dose for the i'th patient

 c_i = steady-state trough concentration, C_{min}

 $y_i = efficacy response$

 η_{1i} , η_{2i} , ... = unobserved covariates, which will be handled in modeling as independent random variables with mean zero

 ϵ_{ci} , ϵ_{yi} = random variables with mean zero, independent of each other and of η_{1i} , η_{2i} , ...

$$\begin{aligned} \log(\mathbf{c}_{i}) &= \alpha_{0} + \alpha_{1} \log(\mathbf{D}_{i}) + \alpha_{2} \eta_{1i} + \alpha_{3} \eta_{2i} + \varepsilon_{ci} \\ \mathbf{y}_{i} &= \beta_{0} + \beta_{1} \mathbf{c}_{i} + \beta_{2} \eta_{1i} + \beta_{3} \eta_{3i} + \varepsilon_{yi} \end{aligned} \tag{A2.1}$$

$$\log(\mathbf{c}_{i}) &= \alpha_{0} + \alpha_{1} \log(\mathbf{D}_{i}) + \varepsilon_{ci} \\ \mathbf{y}_{i} &= \beta_{0} + \beta_{1} \mathbf{c}_{i} + \varepsilon_{yi} \end{aligned} \tag{A2.3}$$

A model to examine possible confounding: 2

$$\begin{aligned} \log(\mathbf{c}_{i}) &= \alpha_{0} + \alpha_{1} \log(\mathbf{D}_{i}) + \alpha_{2} \mathbf{\eta}_{1i} + \alpha_{3} \mathbf{\eta}_{2i} + \boldsymbol{\varepsilon}_{ci} \\ \mathbf{y}_{i} &= \beta_{0} + \beta_{1} \mathbf{c}_{i} + \beta_{2} \mathbf{\eta}_{1i} + \beta_{3} \mathbf{\eta}_{3i} + \boldsymbol{\varepsilon}_{yi} \end{aligned} \tag{A2.1}$$

$$\log(\mathbf{c}_{i}) &= \alpha_{0} + \alpha_{1} \log(\mathbf{D}_{i}) + \boldsymbol{\varepsilon}_{ci} \tag{A2.3}$$

$$\mathbf{y}_{i} &= \beta_{0} + \beta_{1} \mathbf{c}_{i} + \boldsymbol{\varepsilon}_{yi} \tag{A2.4}$$

- η_1 contributes to both models
 - In (A.2.4) c_i is correlated with $\dot{\epsilon}_{vi}$.
 - The least-squares estimates of β_0 and β_1 are biased.
 - This bias is due to the confounder η_1 .
- (A.2.1) arises because patients were randomized to dose, not concentration
- If they were randomized to concentration, then in (A2.4) c_i would be independent of $\dot{\epsilon}_{vi}$. The least squares estimates would be unbiased.

A model to examine possible confounding: 3

$$\begin{aligned} \log(c_i) &= \alpha_0 + \alpha_1 \log(D_i) + \alpha_2 \eta_{1i} + \alpha_3 \eta_{2i} + \varepsilon_{ci} \\ y_i &= \beta_0 + \beta_1 c_i + \beta_2 \eta_{1i} + \beta_3 \eta_{3i} + \varepsilon_{yi} \end{aligned} \tag{A2.1}$$

$$\log(c_i) &= \alpha_0 + \alpha_1 \log(D_i) + \varepsilon_{ci} \\ y_i &= \beta_0 + \beta_1 c_i + \varepsilon_{yi} \end{aligned} \tag{A2.3}$$

- But randomization to concentration is not necessary.
 - It suffices that $\alpha_2 = 0$ and/or $\beta_2 = 0$ and/or var(η_1) = 0;
 - that is, no nontrivial covariate simultaneously influences both concentration and efficacy response.

Diagnostic #1

$$\begin{aligned} \log(c_i) &= \alpha_0 + \alpha_1 \log(D_i) + \alpha_2 \eta_{1i} + \alpha_3 \eta_{2i} + \varepsilon_{ci} \\ y_i &= \beta_0 + \beta_1 c_i + \beta_2 \eta_{1i} + \beta_3 \eta_{3i} + \varepsilon_{yi} \end{aligned} \tag{A2.1}$$

$$\log(c_i) &= \alpha_0 + \alpha_1 \log(D_i) + \varepsilon_{ci} \\ y_i &= \beta_0 + \beta_1 c_i + \varepsilon_{yi} \end{aligned} \tag{A2.3}$$

- But randomization to concentration is not necessary.
 - It suffices that $\alpha_2 = 0$ and/or $\beta_2 = 0$ and/or var(η_1) = 0;
 - that is, no nontrivial covariate simultaneously influences both concentration and efficacy response.
- Then $\dot{\epsilon}_{ci}$ and $\dot{\epsilon}_{vi}$ are independent.
 - Assess residuals for correlation.
 - Absence of correlation is consistent with absence of confounding.

Diagnostic #1, applied

Diagnostic #2: Sensitivity analysis

- Origins: Cornfield et al (1959) smoking and lung cancer
- Rosenbaum and Rubin (1983):
 - Assess the impact of putative confounders on estimated treatment differences
 - Show that to have a clinically relevant impact, a confounder would need to have unreasonably large correlations with **both** treatment **and** response
- Methodology:
 - Assume there is an unobserved confounder
 - Assume "large" correlations with both concentration and efficacy response, but zero correlation with observed covariates.
 - Treat assumed confounder as missing data
 - Estimate model parameters by multiple imputation.
 - Assess impact.

Diagnostic #2, Sensitivity Analysis, cont'd

• Step 1: How large is a large correlation of a covariate with concentration or response?

Covariates and their correlations with PK and Efficacy

	Correlation with:		
	C _{min}	Efficacy Response	
Covariate	Active Drug	Placebo	Active Drug
Age	-0.06	0.07	-0.03
Height	-0.00	-0.08	0.05
Weight	-0.10	-0.07	0.10
Body Surface Area	-0.09	-0.08	0.10
Creatinine Clearance	-0.02	-0.09	0.06
Gender (1=Female, 0=Male)	0.02	0.00	-0.08
Covariate X ^a	-0.11	0.15	0.06
Covariate Y	-0.05	0.01	0.02
Covariate Z	-0.07	0.04	-0.03

Diagnostic #2, Sensitivity Analysis, cont'd

• Step 2: Imputation results

Condition	$\hat{oldsymbol{eta}}_{0}$	$\hat{oldsymbol{eta}}_1$
1. Model (A2.4)	4.58 ± 0.04	-0.0098 ± 0.0011
2. To 1., add covariates and their interactions ^a with C _{min}	4.58 ± 0.04	-0.0103 ± 0.0012
 To 2., add simulated confounder having correlation 0.15 with C_{min} and efficacy 	4.60 ± 0.04	-0.0105 ± 0.0012
 To 2., add simulated confounder having correlation 0.20 with C_{min} and efficacy 	4.60 ± 0.04	-0.0110 ± 0.0012
 To 2., add simulated confounder having correlation 0.25 with C_{min} and efficacy 	4.62 ± 0.04	-0.0117 ± 0.0012
6. To 2., add simulated confounder having correlation 0.30 with C _{min} and efficacy	4.63 ± 0.04	-0.0124 ± 0.0013

a) Covariates are centered when multiplying C_{min} to create the interaction, so that estimates the slope with respect to C_{min} for average values of the covariates

Note: For conditions 3-6, parameter estimates are means of 100 imputations.

Diagnostic #3: Instrumental variables

- Find covariates (instrumental variables) that are correlated with concentration variables but uncorrelated with residual error in the model relating efficacy response to concentration (A2.4)
- Regress concentration variables on the instrumental variables and then regress efficacy response on the predictions from the first regression
 - "Two-stage regression", available in SAS PROC MODEL (SAS/ETS)
 - Estimators are consistent
- Hausman's test compares the two-stage-regression result with the OLS result to assess H₀: the OLS estimators are consistent (e.g., there is no confounding)
 - Hausman's test also available in SAS PROC MODEL

Diagnostic #3: Instrumental variables, cont'd

Estimation method and data	$\hat{oldsymbol{eta}}_0$	\hat{eta}_1	Hausman p-value
Ordinary least squares	4.56 ± 0.04	-0.010 ± 0.001	
Two-stage regression	4.58 ± 0.04	-0.011 ± 0.001	0.47

Conclusions

- The true PK/PD relationship is defined in terms of randomized concentrations.
- But in dose-controlled studies, concentration is also an outcome.
- Such studies may permit only a biased estimate of the true PK/PD relationship.
- The existence of such confounding cannot be definitively disproven within the dose-controlled study itself.
- However, diagnostics may be derived that lend credence to an assumed absence of confounding.

